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Objective: To evaluate safety and efficacy of the scleral allograftereinforced cyclodialysis through 24 months of
follow-up.

Design: Interventional single-center case series.
Participants: Thirty-one eyes with primary open-angle glaucoma and visually significant cataracts underwent bio-

interventional cyclodialysis surgery with scleral allograft reinforcement combined with phacoemulsification.
Intervention: Uveoscleral outflow enhancement surgery comprised of cyclodialysis with sequential bio-

reinforcement with a scleral allograft combined with phacoemulsification.
Main Outcome Measures: The primary outcome was the proportion of eyes achieving �20% intraocular pressure

(IOP) reduction with same or fewer medications compared with baseline. Secondary outcomes included the mean
change in medicated IOP and mean number of IOP-lowering medications compared with baseline. Adverse events were
also recorded and evaluated throughout the study.

Results: The primary outcome was achieved in 74% of the eyes, and there was a mean IOP reduction of 34%
compared with baseline. Baseline mean medicated IOP was 21.9 � 4.92 mmHg on 1.22 � 1.29 IOP-lowering medications.
At 12 months postoperation, mean IOP was 12.62 � 2.63 on 0.55 � 0.52 glaucoma medications. The procedure was well
tolerated, and there were no serious ocular adverse events.

Conclusions: Uveoscleral outflow enhancement can be successfully achieved at the time of cataract surgery
through bio-interventional cyclodialysis and scleral allograft reinforcement to lower IOP in patients with primary open-
angle glaucoma.

Financial Disclosure(s): The author(s) have no proprietary or commercial interest in any materials discussed in this
article. Ophthalmology Science 2025;5:100727 ª 2025 by the American Academy of Ophthalmology. This is an open
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Intraocular pressure (IOP) is a key risk factor for glaucoma
progression, and reducing IOP remains the cornerstone of
glaucoma therapy.1 Surgical treatments for glaucoma
primarily focus on reducing the IOP by enhancing
aqueous humor outflow. Unlike traditional incisional
surgeries, such as trabeculectomy and glaucoma shunt
implants, the current surgical paradigm has shifted toward
safer minimally invasive interventional ab-interno
techniques.2e4 These approaches now represent the major-
ity of glaucoma surgeries performed in the United States.5

Most modern ab-interno surgical techniques target only 1
of the 2 major outflow pathways of the eyedthe trabecular
outflow pathwaydwhile the uveoscleral outflow pathway
still lacks commercially available, United States Food and
Drug Administrationeapproved surgical treatments.6,7 This
stands in stark contrast to the pharmacotherapy approach,
where prostaglandin analogs, the first-line and most effec-
tive class of topical glaucoma therapy, act primarily through
the uveoscleral pathway.8 There is a significant need for
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more efficacious glaucoma interventions, as most existing
trabecular outflow procedures such as goniotomy,
canaloplasty, and trabecular microstents offer only modest
efficacy.9e11 The larger outflow capacity of the uveoscl-
eral pathway may address the need for higher efficacy,
particularly in moderate to advanced cases.12

Cyclodialysis, first introduced by Dr Max Heine in 1905,
was the first clinically meaningful surgical intervention
targeting the uveoscleral outflow pathway.12e14 While its
effect on outflow and IOP is well documented, its long-term
efficacy and durability remain limited, particularly in those
eyes with premature closure of the supraciliary filtration
conduit.12,15 Attempts to maintain the patency of the
cyclodialysis over time, such as injecting stabilization
materials like viscoelastic or air, have had limited success
due to their transient effect.16

More recently, advancements address the need for a
durable biocompatible reinforcement of the cyclodialysis
cleft.17,18 One promising approach is cyclodialysis
1https://doi.org/10.1016/j.xops.2025.100727
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Figure 1. Cyclodialysis creation and viscocycloplasty augmentation (A).
Bio-interventional allograft scleral reinforcement (B).
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reinforced with an allograft bio-scaffold that is designed to
ensure long-term stability of the cyclodialysis conduit,
enhancing uveoscleral outflow and reducing IOP.17,19 This
procedure combines cyclodialysis with highly targeted
submillimeter intraocular scleral reinforcement to sustain
the cyclodialysis conduit for prolonged uveoscleral
outflow augmentation and IOP reduction.17,19

Scleral grafts have long been used for homologous
scleral reinforcement in glaucoma surgery, particularly to
cover the tubes of glaucoma drainage devices.20 The sterile
acellular donor tissue is widely available, is highly
biocompatible, and offers long-term durability and struc-
tural stabilitydkey properties for an implantable bio-scaf-
fold.21,22 Allogeneic scleral tissue is also hydrophilic,
porous, and inert, with biomechanical properties closely
resembling those of native sclera.23e25 This similarity re-
duces fibrosis and foreign body reactions, which are often
driven by the stiffness mismatch between implant materials
and recipient tissues.21,23 Unlike traditional inorganic
implants, natural scleral allografts are bio-conforming and
homologous to the recipient’s endoscleral wall, potentially
reducing fibrosis and cleft closure.26

This study represents a clinical investigation and report
of the 2-year efficacy and safety of bio-interventional
cyclodialysis surgery using allogeneic scleral reinforce-
ment in patients with open-angle glaucoma.

Methods

This is a single-center prospective case series of 31 consecutive
surgeries of bio-reinforced cyclodialysis combined with phaco-
emulsification. Safety and efficacy were evaluated through 24
months of follow-up. The study protocol adhered to the tenets of
the Declaration of Helsinki and was approved by the Panama
Ministry of Health and the local hospital institutional review board.
All study participants provided written informed consent before
initiating study procedures.

Eligibility Criteria

Inclusion criteria for the study included a confirmed diagnosis of
primary open-angle glaucoma with Schaeffer grade >2 angles,
patients aged >18 years old, and visually significant cataract.
Primary open-angle glaucoma diagnosis was established by the
presence of both glaucomatous optic neuropathy and perimetric
defect consistent with open-angle glaucoma. After meeting the
inclusion and exclusion criteria, patients underwent a cyclodialysis
intervention with the CycloPen microinterventional system fol-
lowed by scleral reinforcement with the AlloFlo allogeneic bio-
scaffold (Iantrek, Inc) in combination with cataract surgery. Pa-
tients were then followed prospectively for 24 months. Exclusion
criteria were the presence of narrow-angle glaucoma, prior laser or
surgical iridotomy, axial length >26.0 mm, active ocular inflam-
mation, previous incisional glaucoma surgery, clinically significant
corneal opacity, or visual field loss within central 10�.

Bio-reinforced Cyclodialysis Technique and
Instrumentation

Phacoemulsification was performed first, followed by intraocular
lens implantation and then the glaucoma procedure as described
here. The glaucoma surgical procedure involved a 2-step sequential
intervention performed under standard gonioscopic visualization and
2

a viscoelastic-filled anterior chamber. The first surgical step was the
creation of an ab-interno cyclodialysis (Fig 1A) of �1 clock hour to
create the desired ab-interno aqueous filtration reservoir using a
cyclodialysis spatula. This was followed by the injection of a
cohesive viscoelastic in the cleft for additional viscocycloplasty to
expand the internal uveoscleral filtration channel. The second bio-
interventional step involved targeted endoscleral reinforcement,
where the allograft bio-scaffold was deployed at the endoscleral
surface above the ciliary body using the CycloPen system (Fig 1B).
The ab-interno scleral reinforcement extended 5 mm posteriorly to
maintain the cleft’s entire depth and enhance the structural stability
of the uveoscleral outflow channel. Proper deployment of the bio-
tissue within the cyclodialysis cleft was confirmed gonioscopi-
cally, ensuring it was flush with the iris root. Viscoelastic was
removed from the eye, and the eye was pressurized with a balanced
salt solution. Standard-of-care postoperative treatment for cataract
surgery was prescribed in all cases with topical antibiotic and anti-
inflammatory agents for 4 weeks after surgery.



Table 1. Baseline Characteristics

Characteristics Total

Sample Size, Eyes, N 31
Age, mean � SD, yrs 70.5 � 9.4
Sex: female, % 47%
Combined with cataract surgery, % 100%
Baseline BCVA, mean � SD 0.7 � 0.43
Baseline IOP, mmHg, mean � SD 21.9 � 4.9
Baseline IOP range, mmHg 13e31
Number of IOP-lowering drugs, mean � SD 1.42 � 1.29

BCV ¼ best-corrected visual acuity; IOP ¼ intraocular pressure;
SD ¼ standard deviation.
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Allograft Material Preparation

The allograft material was prepared from standard sterile donor
scleral patch grafts obtained from an eye bank. The tissue was
microtrephined using the high-precision AlloFine trephination
instrumentation (Iantrek, Inc) to create a microscaffold measuring
500 mm in width and 5 mm in length for endoscleral reinforcement.
This bio-scaffold was then loaded into a cannulated carrier, which
was attached to a cyclodialysis system (CycloPen, Iantrek, Inc) for
ab-interno deployment.

Main Outcomes

The primary outcome was the proportion of eyes achieving �20%
IOP reduction with same or fewer medications compared with
baseline. Secondary outcomes included the mean change in
medicated IOP and the mean number of IOP-lowering medications
compared with baseline. Adverse events were also recorded and
evaluated throughout the study.

Statistical Analysis

Analytical methods for the results included descriptive statistics at
the different time points expressed as means � standard deviations,
with differences versus baseline through 24 months of follow-up.
Intraocular pressure and medication outcomes are analyzed using
paired 2-tailed t tests. Categorical data are presented as numbers
and percentages and were compared where indicated using Fisher
exact test with 2 � 2 contingency tables. Logarithm of the mini-
mum angle of resolution conversions were made for all Snellen
visual acuity measures. Statistical significance was defined as
P < 0.05. Statistical and graphing software included Excel
(Microsoft Corp) and Prism, v.9.0 (GraphPad Software).

Results

This study identified 31 eyes that underwent cyclodialysis
intervention with the AlloFlo scleral allograft combined with
Table 2. Mean Medicated IOP and IOP-Lo

Variable Baseline

Mean medicated IOP, mmHg þ SD 21.9 � 4.9
IOP-lowering medications, n, mean � SD 1.4 � 1.3

IOP ¼ intraocular pressure; SD ¼ standard deviation.
cataract surgery. All cases had successful phacoemulsification
with planned intraocular lens implantation followed by a focal
1 to 2 clock hours of cyclodialysis intervention and adjunct
allograft scleral reinforcementdall steps done in a minimally
invasive, clear-cornea, ab-interno surgical technique. The
baseline characteristics of all included eyes are summarized in
Table 1.

At 2 years, there was a mean IOP reduction of 34%
compared with baseline and 74% of the eyes achieved
success with an IOP reduction of �20% using the same or
fewer medications compared with baseline. In addition,
96.8% and 80.6% subjects achieved 24-month IOP � 18
mmHg and IOP � 15 mmHg, respectively. Mean IOP was
reduced from 21.9 � 4.9 mmHg to 13.8 � 2.4 mmHg
(P < 0.0001), and the number of medications declined from
1.4 � 1.3 to 0.5 � 0.5 (P ¼ 0.0006) (Table 2). Mean IOP at
6, 12, and 24 months is reported in Figure 2, and the
changes in IOP at all follow-up time points are statisti-
cally significant compared with the baseline. Operated eyes
had good visual acuity outcomes, increasing from an
average baseline logarithm of the minimum angle of reso-
lution best-corrected visual acuity of 0.70 � 0.43 to
0.11 � 0.11 at 24 months (P < 0.0001; n ¼ 31 paired de-
terminations), which is anticipated with the concurrent
cataract surgery. Endothelial cell density (ECD) was
collected on all 31 subjects at baseline (mean
ECD ¼ 2420.9 � 334), 12 months (mean
ECD ¼ 2277.6 � 322.2), and 24 months (mean ECD ¼
2196.2 � 321.4). The mean endothelial cell loss at 12 and
24 months did not exceed 10% and was consistent with
expected loss seen after cataract and microinvasive glau-
coma surgery (MIGS) procedures. No eyes had significant
(>30%) endothelial cell loss.

All adverse events were transient and occurred in the first
3 to 6 months after surgery (Table 3). There was no clinical
hypotony in any of the patients in the early postoperative
period and no vision-threatening intraoperative or serious
postoperative complications. There was no severe or
persistent inflammation or hyphema, and no bio-tissue
migration or corneal touch was observed throughout the
24-month follow-up period. Figure 3 illustrates the
postoperative OCT imaging, highlighting the stability and
tissue compatibility of the bio-stent.

Discussion

This study demonstrates good IOP-lowering effect and long-
term durability of the scleral bio-reinforced cyclodialysis
combined with cataract surgery. There was a significant and
sustained reduction in IOP with few ocular adverse events
wering Medications at Each Time Point

6 Months 12 Months 24 Months

13.7 � 3.4 12.6 � 2.6 13.8 � 2.4
0.6 � 0.6 0.5 � 0.5 0.5 � 0.5
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Figure 2. Mean medicated IOP at each time point. IOP ¼ intraocular
pressure; SD ¼ standard deviation.
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and complications during both the operative and long-term
postoperative periods, aligning with the standards for
minimally invasive surgical treatments.

This modified technique addresses key limitations of
conventional cyclodialysis by incorporating a bio-
reinforcement strategy aimed at improving the consistency
and duration of the aqueous outflow. Traditional cyclo-
dialysis, while effective in lowering IOP, has been limited
by issues such as fibrosis and failure of the supraciliary
filtration conduit.12 By contrast, this precisely controlled
procedure with the addition of a bio-scaffolding cleft
maintainer leads to a more predictable and reliable outcome.
The use of advanced microinterventional tools, such as the
CycloPen, allows for high precision in disinsertion of the
ciliary body over 1 to 2 clock hours. This precise localiza-
tion, facilitated by high-magnification gonioscopic visuali-
zation, minimizes trauma and optimizes the creation of an
internal suprachoroidal reservoir, which, when combined
with viscocycloplasty, ensures the establishment of a
Figure 3. Representative coronal image (green lines and arrow) (A) of
scleral reinforcement spacer used to scaffold the cyclodialysis reservoir, with
postoperative OCT imaging showing endoscleral bio-integration and tissue
homology (B).

Table 3. Adverse Events

Variable 24 Months

Intraoperative hyphema (transient), n (%) 1 (3.2)
Postoperative IOP increase (10 mmHg or
>30 mmHg), n (%)*

2 (6.4)

>2 lines drop in BCVA, n (%) 0
Persistent inflammation requiring topical
steroids (>1 mo), n (%)y

5 (16)

Severe postoperative inflammation (grade 4þ), n (%) 0
Persistent postoperative hyphema (>1 mo), n (%) 0
Severe postoperative hyphema (>3 mm), n (%) 0
Persistent corneal edema (>1 mo), n (%) 0
Bio-tissue migration, n (%) 0
Cystoid macular edema 0
Hypotony maculopathy 0

BCVA ¼ best-corrected visual acuity; IOP ¼ intraocular pressure.
*All resolved with conservative management. One case was on post-
operative day 1 secondary to retained viscoelastic, and one case was at
1-month follow-up.
yAll cases of mild inflammation beyond the 30-day postoperative period
which resolved by 3 months.
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sustainable filtration pathway. Additionally, the incorpora-
tion of scleral reinforcement with natural allograft tissue
helps to maintain the patency of this reservoir and reduces
the risk of fibrotic closure, a common issue with traditional
cyclodialysis approaches.

The use of homologous allograft tissue is particularly
noteworthy as it offers several advantages over synthetic
implants. The biocompatibility and bio-conforming proper-
ties of the allograft reduce the likelihood of foreign body
reactions, inflammation, and fibrosis.21,22 Furthermore,
avoiding the introduction of foreign hardware eliminates
the risk of collateral tissue damage, which can be seen
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with other devices used in MIGS.26e28 These findings are in
line with recent trends in MIGS toward approaches that
prioritize safety, biocompatibility, and durability, as re-
flected in studies that emphasize the long-term advantages
of biologically derived materials in ophthalmic surgeries.19

The reduction of adverse events during both the periop-
erative and postoperative periods also supports the safety
profile of this technique. With minimal complications, the
bio-scaffolded cyclodialysis approach promises a less
invasive alternative to more aggressive glaucoma surgeries,
such as trabeculectomy or tube shunts, which carry higher
risks of postoperative complications.29

However, while our findings are promising, they also
raise several questions for future investigation. First, a larger
cohort will inform further as to the efficacy and safety.
Certainly, durability beyond 2 years will need to be estab-
lished as well, similar to other glaucoma surgeries.
Additionally, while uveoscleral outflow has a significant
IOP-lowering effect, randomized comparisons with trabec-
ular outflow surgery or incremental to trabecular interven-
tion also are needed. An additional limitation of this
prospective single-arm study is its uncontrolled design,
which increases the susceptibility of the results to
regression-to-the-mean bias. While there may be corneal
safety advantages to bio-interventional cyclodialysis
without any hardware in the anterior chamber, other
differentiating advantages between this approach and con-
ventional suprachoroidal MIGS devices remain to be
understood.

The precise mechanisms by which the bio-scaffold pre-
vents fibrotic closure and maintains the long-term patency of
the suprachoroidal reservoir require further elucidation. The
role of the allograft in modulating the wound-healing
response and preventing fibrosis is an area of potential
investigation, particularly in understanding how different
types of bio-scaffolds influence outcomes. As MIGS
evolves, these findings could contribute to the development
of even more refined and individualized treatment strategies
for patients with glaucoma.

In conclusion, this study demonstrates that the integration
of bio-reinforcement into an ab-interno cyclodialysis
uveoscleral conduit offers a solution to some limitations
associated with traditional cyclodialysis surgery. With sus-
tained IOP reduction, decreased medication reliance, and a
favorable safety profile, this approach holds significant po-
tential for broader clinical application. Future studies are
needed to validate and define further the treatment profile
and clinical utility of this approach.
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